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Theory of grating superstructures

N. G. Raphael Broderick* and C. Martijn de Sterke†

School of Physics and Australian Photonics Cooperative Research Centre, Australian Technology Park, Eveleigh, 1430, Aus
~Received 9 October 1996!

We develop the theory of linear and nonlinear grating superstructures, gratings in which the parameters vary
periodically with position on the scale of typically about 1 mm. Following earlier work in semiconductors,
these have now been written in optical fibers. We develop the theory by introducing a set ofsuperenvelopes:
envelopes of the usual envelope functions of the grating structure. We show that under very general conditions
these superenvelopes satisfy a set of supercoupled mode equations, and that these equations have solitary wave
solutions.@S1063-651X~97!11103-5#

PACS number~s!: 03.40.Kf, 42.81.Wg, 42.79.Dj
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I. INTRODUCTION

Recent developments in grating writing techniques in
tical fibers allow for the fabrication of a wide range of no
uniform Bragg gratings@1#. Among the more important de
signs are superstructure gratings~SSG’s! or optical
superlattices@2#. These are gratings in which the paramet
are periodically modulated with a period of typical
100mm–1 cm. Using different techniques, a variety of pe
odic profiles can be fabricated@3–6#. In Fig. 1 we show the
variation of the coupling strengthk, which is proportional to
the refractive index modulation, with position for a SS
Note that the strength varies periodically, with a period
9 mm, and that the repeated profile has a triangular sh
The periodic modulation of the SSG results in a combl
reflection spectrum with the various peaks, the ‘‘Rowla
ghosts,’’ @7# being closely spaced in frequency.

In semiconductor geometries, SSG’s have been use
tuneable distributed feedback lasers@8,9#, something which
has also recently been achieved in optical fibers@4#. In opti-
cal fibers, SSG’s have also been used as multichannel
persion compensators in wavelength division multiplex
systems@10#. It should be mentioned that sometimes an S
is written unintentionally if the phase mask used to write
uniformgrating has periodicstitching errors@6#.

Of course the properties of SSG’s can be found by solv
the relevant coupled mode equations numerically, but
does not give much physical insight. Therefore, in the ap
cations mentioned above the SSG has often been assum
be ‘‘weak’’ allowing a Fourier description to be used@8#. In
this description the different reflection peaks are well se
rated, and the peak reflectivity of thej th peak is given by
tanh2(kjL), whereL is the length of the grating andk j is the
strength of thej th component in the Fourier decompositio
of the SSG.

The Fourier method mentioned above is similar to
standard coupled mode analysis of uniform Bragg grati
@11#, in which only a single Fourier coefficient of the refra
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tive index profile is included. But this approach fails whe
the grating is too deep, i.e., when the refractive index mo
lation depth is too large@12,13#. Similarly, the Fourier de-
scription is valid for weak SSG’s, but it fails when the SS
is sufficiently deep. We see below that deep superstruct
can easily be obtained in fiber geometries, even though
gratings themselves are shallow; then an alternative to
Fourier description must be used for the quantitative desc
tion of an SSG.

Recently a convenient method was developed by
Sterkeet al. @12,13# to treat deep Bragg gratings. It leads
a set of coupled mode equations which are similar to th
which follow from conventional coupled mode theory. D
Sterke’s approach relies on the Bloch functions@14# of the
grating and thus a knowledge of the linear properties of
grating is required. We have adapted this approach so th
can be applied to treat deep SSG’s; it makes use of
SSG’s Bloch functions. We reported on some prelimina
results earlier@15,16#. Here we give the full theory and dis
cuss the implications of our results in detail. In our discu
sion we follow closely the notation of Ref.@13#, as many of
the results established there carry over to SSG’s. Our the

ton

FIG. 1. Coupling coefficientk as a function of position for a
typical SSG. Note thatk is periodic and with a period of 9 mm.
3634 © 1997 The American Physical Society
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55 3635THEORY OF GRATING SUPERSTRUCTURES
is also well suited to problems involving optical nonlinea
ties. This is of particular importance as the first results
high-intensity pulse propagation experiments in SSG’s, w
ten in the optical fibers, were recently reported@5#.

The outline of this paper is as follows. In Sec. II w
present the coupled mode equations for SSG’s, and ana
the linear properties of SSG’s. In Sec. III we present
evolution equations for the superenvelopes in a nonlin
SSG. We use a one-band approximation, leading to the n
linear Schro¨dinger equation~Sec. III A!, as well as a two-
band approximation~Sec. III B!, leading to supercoupled
mode equations. Solutions to the supercoupled mode e
tions are discussed in Sec. IV.

II. COUPLED MODE EQUATIONS

We consider one-dimensional propagation through a g
ing with a nearly periodic refractive index, i.e.@17#,

n~x!5n01dn~x!1Dn~x!cosS 2px

d0
1q~x! D , ~1!

wheredn, Dn, andq are, in principle, all slowly varying
functions of position, whilen0 andd0 are a fixed reference
refractive index and period, respectively. Note that the ac
periodd of the grating may be varied through variation
q(x). In addition to the spatial dependence in Eq.~1!, we
take the grating to exhibit a Kerr nonlinearity; the refracti
index thus depends on intensity through

n~ I !5nl1n~2!I , ~2!

where I is the intensity andn(2) is the nonlinear refractive
index.

In the usual applications, gratings couple light with
wave number aroundk056p/d0, to k057p/d0, i.e., they
reflect light with wave numberk0 @11,17#. Definingv0 as the
frequency atk0, then for light with a frequencyv such that
v'v0, propagating through a Bragg grating, one may
proximate the electric field as@17#

E~x,t !5 @E1~x,t !e1 i ~k0x1q/2!1E2~x,t !e2 i ~k0x1q/2! #

3e2 iv0t1c.c., ~3!

where c.c. indicates the complex conjugate, and we h
assumed the grating to be shallow. The functionsE6 are the
slowly varying envelopes of the forward and backwa
propagating modes. With this ansatz for the electric field
can approximate Maxwell’s equations by@18,19#

1 i
] E1

]x
1

i

vg

] E1

]t
1k~x! E21d~x! E112Gu E2u2 E1

1Gu E1u2 E150,

2 i
] E2

]x
1

i

vg

] E2

]t
1k~x! E11d~x! E212Gu E1u2 E2

1Gu E2u2 E250, ~4!

where@17–19#
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k~x!5
pDn~x!

l
,

d~x!5
2pdn~x!

l
2
1

2

dq

dx
,

G5
4pn0
lZ

n~2! ~5!

are all real. Further,vg is the group velocity atv0 in the
absence of a grating,l is the free space wavelength, andZ
the vacuum impedance. The parameterk(x) gives the
strength of the grating, whiled(x) describes the detuning o
the Bragg frequency fromv0. Nonlinear effects are de
scribed byG, which we take to be constant in space,
though this is not essential.

Though ultimately we are interested in gratings for whi
both k and d are periodic, andGÞ0, we now briefly con-
sider uniform linear gratings for whichk andd are constant
and G50, as some of the concepts carry over. Under
conditions discussed above, we first consider the unifo
grating’s dispersion relation@14,19#. Substituting

E6~x,t !5A6e
i ~kx2vgDt !, ~6!

where the detuningD is related to the actual frequencyv
through

D5
v2v0

vg
, ~7!

we find that Eqs.~4! lead to two coupled linear algebrai
equations. Nontrivial solutions can be found when

D52d1Ak21k2. ~8!

This relation is indicated by long-dashed lines in Fig. 2; su
scripts on the symbols should for now be ignored. Figur
shows that for2d2k,D,2d1k no plane-wave solutions
exist; this corresponds to the photonic band gap of the u
form grating. The center of the photonic band gap,
D52d, corresponds to the Bragg frequency.

A. Linear properties of SSG

As mentioned in Sec. I, our procedure for deep SSG
requires knowledge of the Bloch functions of these str
tures. To define these we write thelinear coupled mode
equations as@13#

i

vg

]E

]t
5M ~x!E, ~9!

whereE is the vector with elements (E1 ,E2), andM is the
operator defined as

M ~x!5S 2 i ]/]x2d~x! 2k~x!

2k~x! 1 i ]/]x2d~x!
D . ~10!

For SSG’s, the key property ofM is that it is periodic with
periodL, so that
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3636 55N. G. RAPHAEL BRODERICK AND C. MARTIJN de STERKE
M ~x1L!5M ~x!. ~11!

We now search for the eigenvectorsC, with elements
(c1 ,c2) of M , by setting@13#

E5Ce2 ivgDt, ~12!

so that

MC5DC; ~13!

because of the periodicity ofM we refer to theC as the
Bloch functions@14#.

We have now recast the coupled mode equations in
Schrödinger-equation-like formalism, withM playing the
role of the Hamiltonian. Indeed many of the results fro
quantum mechanics concerning periodic potentials can
applied to SSG’s with little modifications. The most impo
tant of these is Bloch’s theorem according to which the
lutions to Eq.~13! with M satisfying Eq.~11! must have the
property@20,21#

C~x1L!5eikLC~x!, ~14!

for some real numberk. This restatement of Bloch’s theorem
can be proven by a straightforward adaption of, for exam
the approach in Ziman@20#. Equation~14! implies that an
eigenfunction ofM can be written as

C~x!5S h1~x!

h2~x!
D eikx ~15!

with the associated eigenvalueD. As in solid-state physics
@21,20#, the functionsh6 are periodic with periodL. The
real numberk is the reduced wave number, which is usua
chosen in the first Brillouin zone, wher
2p/L,k<1p/L; it labels the eigenvalues and eigenfun

FIG. 2. The dispersion relation for a uniform grating, given
Eq. ~16!, is indicated by the dashed line. The introduction of
infinitesimally weak periodicity with periodL causes the dispersio
relation to fold in the first Brillouin zone between6p/L ~solid
line!.
a

e

-

e,

tions ofM . For a periodic system it is expected that for fixe
k, the eigenvalues ofM are discrete, as is true in quantu
mechanics@20,21#. This implies that the allowed detuning
D, corresponding to the eigenvalues ofM , can be labeled by
integers. Thus for a SSG each Bloch function has t
‘‘quantum numbers’’: an integern which labels the band
and the~real! reduced wave numberk. Usually one considers
the eigenvaluesDnk to be functions ofk, which immediately
leads to the photonic band structure: the photonic band
gram for a SSG is obtained by plotting theDnk versusk. We
illustrate these general statements in Sec. II B.

B. Photonic band structure of SSG’s

Before illustrating the discussion in Sec. II A with a com
plete photonic band diagram, we first treat the limiting ca
where the SSG is a small perturbation to a uniform grati
This allows us to find the approximate positions of the Ro
land ghost gaps in the dispersion relation analytically. Fo
general SSG, letk0 andd0 be the zeroth-order Fourier com
ponents ofk(x) and d(x). The SSG is then considered
perturbation, characterized by the other Fourier coefficie
to a uniform grating with strengthk0 and center frequency
D52d0. The dispersion relationship for the uniform gratin
is @Eq. ~8!#

D52d06Ak21k0
2, ~16!

where the wave numberk can take on any value~long-
dashed lines in Fig. 2!. Introducing an infinitesimally weak
periodic perturbation with periodL, we now apply the stan-
dard results from condensed matter physics~see the last
paragraph of Sec. II A!: k represents a reduced wave numb
within the first Brillouin zone:2p/L,k<1p/L @20,21#.
As mentioned, this restriction ofk implies thatD is now a
multivalued function ofk, as illustrated by the solid lines in
Fig. 2.

Folding the uniform grating dispersion relation into th
first Brillouin zone causes crossings of the dispersion re
tion at the edges and in the center of the Brillouin zone
detunings

D l 52d01sgn~ l !AS l p

L D 21k0
2, l PZ ~17!

with the exception ofl 50 ~see Fig. 2!. The function
sgn (l ) is defined by sgn(l )51 if l .0, sgn(0)50 and
sgn(l )521 if l ,0. It is at these detunings that gaps op
up due to Bragg reflection as the strength of the SSG
creases.

For weak SSG’s previous authors have stated@8# that the
width of the gap centered aroundDn is 2uknu, wherekn is
the strength of thenth Fourier coefficient ofk; we confirm
this in the Appendix, though we also prove somewhat m
general results valid under less restricitve conditions. But
a deep SSG these predictions break down and a diffe
formalism must be used. Nevertheless the gaps occur a
tunings given by Eq.~17!, whenk50 or k5p/L. The open-
ing of gaps in the dispersion relation can be seen in Fig. 3~a!,
which shows the full dispersion relation of the SSG in Fig.
We tookq in Eq. ~1! a constant, anddn5Dn, as is usually



us
th

n
co
SG
i
s
pe
ta

d
o

g
a

uc
ed
c

we
find
at

of
t be
we
fine

that
i-
ra-
e

ot

er-

ic

e

a

he

ns

th
d

ity

55 3637THEORY OF GRATING SUPERSTRUCTURES
the case in optical fibers@17#, so that, with Eqs.~5!,
d52k. In Fig. 3~a! D2'5 cm21, D1'1.5 cm21,
D0'22 cm21, D21'25.5 cm21, D22'29 cm21, etc.,
consistent with Eq.~17!.

For most SSG’s analytic solutions to Eq.~13! are not
known and the Bloch functions and dispersion relation m
be found numerically. A method to do this is described in
Appendix @21#; the bands in Fig. 3~a! were obtained using
this method. In Fig. 3~b! we show the associated reflectio
spectrum. Clearly each peak in the reflection spectrum
responds to a gap in the dispersion relation for the S
Following the notation used to describe periodic errors
diffraction gratings@7# we refer to the reflection peaks a
Rowland ghosts, and to the corresponding gap in the dis
sion relation as Rowland ghost gaps. We note that the s
dard Fourier treatment of shallow SSG’s~see Sec. I! requires
that the reflection peaks of the SSG are sufficiently space
be able to treat them as independent. Though this is a g
approximation for the reflection peaks withD.5 and
D,210 in Fig. 3~b!, it is clearly suspicious for the stron
central reflection peaks, for which the spacing roughly equ
the width.

We can now formulate a rough criterion for a superstr
ture to be deep. The centers of two adjacent gaps at the
or the center of the Brillouin zone are spaced by a frequen
approximately given by@see Eq.~20!#

p

L
vg . ~18!

As shown in the Appendix below Eq.~A12!, in a shallow
grating the width of a gap is of order@8#

2vguknu, ~19!

FIG. 3. ~a! Band diagram for the triangular SSG discussed in
text and shown in Fig. 1. The Rowland ghost gaps are centere
the detunings D2'5 cm21, D1'1.5 cm21, D0'22 cm21,
D21'25.5 cm21, D22'29 cm21, etc., given by Eq.~17!. The
corresponding reflection spectrum is shown in~b!; note that the
Rowland ghost gaps correspond to detunings with high reflectiv
t
e

r-
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to
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wherekn is the strength of thenth Fourier component of
k. For the various reflection peaks to be independent,
require the associated gaps not to be too close. We thus
that for a superstructure to be shallow, it is necessary th

uknuL!
p

2
'1, ~20!

for all appropriate Fourier components. If at least one
these inequalities is not satisfied, then the grating canno
treated as shallow over its entire spectrum. At this point
note that there is some ambiguity as to how one would de
a shallow SSG. The implicit choice in the literature@3,8#
corresponds to applying inequality~20! to all Fourier com-
ponents of the SSG. However, in the Appendix we argue
the inclusion in~20! of n50, the Fourier component assoc
ated with the underlying uniform grating, can lead to pa
doxical results. We return to this in Sec. A1. From Fig. 1 w
estimate the left-hand side of Eq.~20! to be about 0.7 for
n561, confirming that, by either criterion, the SSG is n
shallow at all detunings.

C. Properties of Bloch functions

Before continuing we need to establish some key prop
ties of Bloch functions. From Eq.~10! it can be seen that if
C with components@c1(x),c2(x)# is an eigenfunction of
M , then for any real numberj so is

C̄[ei jS c2*

c1*
D ~21!

with the same eigenvalueD asC. Furthermore Bloch’s theo-
rem implies that ifC has a reduced wave numberk, then
C̄ has the reduced wave number2k. Physically the solution
C̄ corresponds to the same solution asC but moving with
the opposite group velocity. This implies that the photon
band diagram must have inversion symmetry aboutk50, as
is seen in Fig. 3~b!.

However, since gaps occur atk50,6p/d, if C is a Bloch
function at the top or bottom of a gap, then so isC̄ defined
by Eq. ~21!, and furthermore it is associated with the sam
point of the dispersion relation asC. Since for a particular
k andD the ~normalized! Bloch functions are unique up to
constant phase, we must then have

C̄5C ~22!

for some phase anglej in Eq. ~21!. If we make the transfor-
mationC→exp(2ij/2)C, then Eq.~22! implies that

C5S c~x!

c~x!* D . ~23!

We now choose the phases ofc1 andc2 such that at the
edges of any Rowland ghost gap Eq.~23! is satisfied.

Figure 4 shows the moduli of the Bloch functions at t
top ~solid line! and bottom~dashed line! of the Rowland
ghost gap centered onD1'1.5 cm21. By comparing Fig. 1
of the grating profile and Fig. 4 we see that at positio

e
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3638 55N. G. RAPHAEL BRODERICK AND C. MARTIJN de STERKE
where the grating strength vanishes the Bloch functions h
a constant intensity. This is as expected, as in these reg
light freely propagates.

D. Preliminary results

Here we establish some preliminary results which w
prove useful when deriving the supercoupled mode eq
tions. Eigenvalue equation~13! is equivalent to Eq.~9! from
Ref. @13#. Much of the derivations following this equatio
can be carried over straightforwardly to the present case
particular, we adopt the normalization

E
0

L

dxC†
•C5N, ~24!

whereL is the normalization length over which the period
boundary conditions are applied, andN[L/L is the number
of periods inL. A feature of normalization~24! is the ab-
sence of a nonconstant metric or kernel; this should be c
trasted to related systems where the refractive index@13# or
the dielectric function@22# play this role. Apart from the sign
then, convention~23! and normalization ~24! uniquely
specify the Bloch functions at the edges of each Rowla
ghost gap.

Using ak•V expansion as in Ref.@13#, it can be proven
that the group velocityDmk8 and the group velocity dispersio
Dmk9 associated with a position on the dispersion relat
indicated byk andn are given by

Dnk8 5
]Dnk

]k
5vnn~k!,

Dnk9 5
]2Dnk

]k2
522(

pÞn

vpn~k!vnp~k!

Dpk2Dnk
, ~25!

FIG. 4. Bloch functions at the top and bottom of the gap c
tered aroundD'1.5 at the edge of the Brillouin zone. The solid lin
is uc1(x)u25uc2(x)u2 at the top of the gap, while the dashed lin
gives that at the bottom. Recall that according to the discussio
Sec. II C the square moduli of the two components of a Blo
function are the same.
ve
ns

l
a-

In

n-

d

n

where

vpn~k!5
1

NE0
L

dxCpk
† szCnk5

1

NE0
L

dxhpk
† szhnk , ~26!

whereh is the column vector with the elements (h1 ,h2)
@see Eq.~15!# andsz is the Pauli matrix diag(1,21). At the
edges and in the center of the Brilouin zone the group ve
ity vanishes@see Fig. 3~a!#, so that the first of Eqs.~25! with
Eq. ~26! implies thatuc1u25uc2u2, confirming that the net
energy transport vanishes.

III. EVOLUTION EQUATIONS FOR SUPERENVELOPES

Here we present the derivation of the supercoupled m
equations which describe light propagation through a non
ear SSG. Briefly, this approach can be understood as follo
It is well known that applying standard coupled mode theo
to a uniform grating allows one to replace the Maxwell equ
tions with periodic coefficients, with coupled mode equa
tions with constantcoefficients. Such an approach is val
for a range of frequencies about one of the Bragg frequen
of the periodic structure. For SSG’s, which are characteri
by a doubly periodic refractive index@see Eq.~1!#, applying
standard coupled mode theory then allows us to repl
Maxwell’s equations by the coupled mode equations w
periodic coefficients@Eqs.~4!#. Presumably, then, applying
coupled-mode-like theory to the latter would be expected
result in a set of equations~supercoupled mode equation!
with constant coefficients. Such a supercoupled mode the
would be valid close to one of the Rowland ghost ga
shown in Fig. 3~a!. Below we show this to be true.

Below we take two approaches to deriving evoluti
equations for the superenvelopes. First we expand the e
lopes in terms of a single Bloch function of the field env
lopes ~Sec. III A! which leads to the nonlinear Schro¨dinger
equation. In Sec. III B we expand in terms of two such Blo
functions, leading to the supercoupled mode equations~Sec.
IIIC !.

A. Single-band approximation:
The nonlinear Schrödinger equation

Here we take the envelopesE of the form

E~x,t !5a~x,t !Cnk~x!e2 ivgDnkt, ~27!

where Cnk(x) is a Bloch function of the superstructure
while Dnk indicates its eigendetuning. HereCnk(x) is taken
to be at the edge of one of the Rowland ghost gaps~such as
those in Fig. 3!, though this is not essential. In Eq.~27!,
a(x,t) is a function which varies slowly compared to th
Bloch function of the superstructure; we thus require thaa
varies slowly compared toL. By the same argument we als
requirea to vary slowly in time on the scale of (vgk0)

21.
Sincea(x,t) varies slowly in space and time on the scale
the usual envelope functions of the electric field we refer t
as a superenvelope.

We now substitute ansatz~27! for the field into the
coupled mode equations and find the evolution equation
the superenvelopea(x,t). As mentioned, the details of thi
procedure are virtually identical to those described in S
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55 3639THEORY OF GRATING SUPERSTRUCTURES
V B of Ref. @13# and so we do not repeat them here. T
only difference is that the envelopesE6 are complex, while
the actual electric and magnetic fields are, of course, r
We therefore do not need to take the real part of Eq.~27! as
was done in the corresponding Eq.~68! in Ref. @13#. Follow-
ing now Ref.@13# we find thata(x,t) satisfies a nonlinea
Schrödinger equation,

i S ]a

]t
1Dnk8

]a

]xD1
1

2
Dnk9

]2a

]z2
1auau2a50. ~28!

HereDnk8 is the group velocity associated withCnk , while
Dnk9 is its group velocity dispersion@Eqs.~25!#. Finally, a is
an effective nonlinearity, which is given in terms of a no
linear overlap ofCnk :

a5GE
0

L

dx ~ uc1u414uc1c2u21uc2u4 !56GE
0

L

dxuc1u2,

~29!

where thec6 are the components ofCnk , and for the last
equality we have used Eq.~23!, so that it is only valid at
k50 andk56p/L. The nonlinear Schro¨dinger equation is
well known to have soliton solutions. The significance
these solutions in the context of SSG’s is discussed in
sections below.

The accuracy of one-band approximations, wherek was
taken to be at the edge of a photonic band gap, was stu
before@22#. It was found that it is valid only over the narrow
range of frequencies for which mixing of Bloch function
can be ignored@22#. It is likely that the one-band approach
better whenCnk is taken to be away from any of the gap
but since grating effects are then not very prominent this
not of primary interest.

Using the explicit expressions for the Bloch functions
the center and at the edges of the Brillouin zone in the s
low SSG limit @Eqs.~A14! and~A16!# it is easily found that
in this limit

D850,

D956
cosw l

k l
,

a5
3G

4L
~21sin2w l !N, ~30!

where thew l are defined in Eqs.~A12!. Because the group
velocity always vanishes fork50,p/d, the first of these is
true for any SSG. Further, throughN, a depends explicitly
on the normalization lengthL. This can easily be avoided b
defining ā(x,t)5aAN @22#, for which the nonlinear param
eter does not depend onN at all.

B. Two-band approximation

A more general approach than Eq.~27! involves two
Bloch functions and two superenvelopes,

E~x,t !5@ f u~x,t !Cu~x!1 f l~x,t !C l~x!#e2 ivgD0t, ~31!
l.

f
e

ed

is

l-

which is the approach we concentrate on henceforth. We
theCu,l to be Bloch functions at the upper and lower edg
of one of the Rowland ghost gaps@Fig. 3~a!#, respectively, as
this describes the situation of most interest. Writing t
eigendetunings asDu,l , we define

D05
1

2
~Du1D l !, ~32!

corresponding to the center of the Rowland ghost gap un
consideration. Finally, thef u,l(x,t) in Eq. ~31! are slowly
varying superenvelope functions. Ansatz~31! is similar to
Eq. ~80! in Ref. @13#, and the analysis in Sec. VI B straigh
forwardly carries over to SSG’s; again, the only difference
that theE6 are complex functions, while the electric an
magnetic fields are real.

Following then the derivation of de Sterkeet al. @13#, the
superenvelopesf u,l can be shown to satisfy a set ofsuper-
coupled mode equationsof the form

i
] f u
]t

5s f u1V
] f l
]x

2a1u f uu2f u2a2u f l u2f l

2a3~2u f uu2f l1 f u
2f l* !2a4~2u f l u2f u1 f l

2f u* !,

i
] f l
]t

52s f l2V
] f u
]x

2a3u f uu2f u2a5u f l u2f l

2a4~2u f uu2f l1 f u
2f l* !2a2~2u f l u2f u1 f l

2f u* !.

~33!

Here,

s5Du2D05D02D l , ~34!

where the last equality follows from Eq.~32!, and

V5 ivul ~35!

is real, as can be ascertained from definition~26! and con-
vention ~23!. Finally, the a are various nonlinear overla
integrals of the Bloch functions, defined as

a156GE
0

L

dxuc1uu4,

a253GE
0

L

dxuc1 l u2~c1 lc1u* 1c1 l* c1u!,

a353GE
0

L

dxuc1uu2~c1 lc1u* 1c1 l* c1u!,

a45GE
0

L

dx$4uc1uc1 l u21@~c1 lc1u* !21~c1 l* c1u!
2#%,

a556GE
0

L

dxuc1 l u4, ~36!

wherec1u,l is the first element ofCu,l . Note that it follows
immediately from the definitions that alla i are real. In ad-
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dition, using the method described in Ref.@23# we can find
inequalities pertaining to the magnitudes of thea i . First note
that by inspection

a4<ā4[6E
0

L

dxuc1uc1 l u2. ~37!

Then, using the method in Ref.@23# it is straightforward to
prove the Schwarz inequality

a1a5>ā4
2>a4

2 . ~38!

Another inequality can be formulated if one first defines

a2<ā2[6E
0

L

dxuc1uc1 l
3 u,

a3<ā3[6E
0

L

dxuc1 lc1u
3 u. ~39!

Then write the argument of the right-hand side of the fi
inequality ~39! as uc1 l u23uc1uc1 l u, and that of the second
as uc1uu23uc1uc1 l u. Applying the Schwarz inequality to
each of these, it can then be shown that

a1a5>ā2ā3>a2a3 . ~40!

Equations~33! are identical to Eqs.~100! in Ref. @13#.
However, in the subsequent step in this reference only
special casek50,p/d, where a25a350, is considered.
Note that in the present case of SSG’s, we also restrict
selves to the center and edges of the Brillouin zone, but n
a2 ,a3 generally do not vanish.

C. Transformation to supercoupled mode equations

Equations~33! take on a more familiar form if we intro
duce the superenvelopesf6 through@13,24#

f65 f l7 i f u . ~41!

In terms of these new envelope functions the supercou
mode equations~SCME’s! attain their final form:

i
] f1

]x
1

i

V

] f1

]t
1k̃ f21G̃u f1u2f112G̃u f2u2f11G1~ u f1u2

1u f2u2! f21~G1f2 f1* 1G1* f1 f2* ! f11G2f2
2 f1* 50,

i
] f2

]x
1

i

V

] f2

]t
1k̃ f11G̃u f2u2f212G̃u f1u2f21G1* ~ u f1u2

1u f2u2! f11~G1f2 f1* 1G1* f1 f2* ! f21G2* f1
2 f2* 50.

~42!

Here

k̃5
s

V
, ~43!

and the nonlinear coefficients are linear combinations of
a i @Eqs.~36!#, given by
t

e

r-
w

d

e

G̃5
1

8V
~a112a41a5!,

G15
1

8V
@~2a11a5!22i ~a21a3!#,

G25
1

8V
@~a126a41a5!24i ~a22a3!#. ~44!

Thus G̃ is real, whileG1,2 generally are complex. As men
tioned, Eqs.~42! are identical to the coupled mode equati
for deep gratings, except that in the latter case,
k50,p/d, a25a350, so that all nonlinear coefficients ar
real. We note that despiteG1,2 being complex in Eqs.~42!,
we find that

]

]t
~ u f1u21u f2u2!5

]

]x
~ u f1u22u f2u2!, ~45!

indicating that energy is conserved, as required for a loss
system.

Using inequality~38! it is easy to show that

uG1r u,uG2r u<G̃, ~46!

whereG j r indicates the real part ofG j . Also, using inequal-
ity ~40! we can formulate an inequality in terms of the imag
nary parts ofG1,2; however, it appears not to be very usefu
and we do not give it here.

We now first consider the shallow SSG limit of the resu
derived above. By substituting expressions~A14! and~A16!
for the Bloch functions of a shallow SSG into definition
~36! it is found that

a25a350, a15a553a4 , ~47!

consistent with inequality~38!. Thus we find from Eqs.~44!
thatG1,250. The SCME’s for a shallow SSG thus have t
same form as the coupled mode equations for ashallow uni-
form grating @2# @i.e., Eqs. ~4! with constant coefficients
@18,19##. We comment on this below. Using Eqs.~A14! and
~A16! it is found that in the shallow SSG limit

G̃5
NG

4Lvg
~21sin2w l !. ~48!

Thus just like coefficienta in the nonlinear Schro¨dinger
equation@Eq. ~30!#, G̃ depends on the normalization lengt
via N; it is removed by considering the evolution of th
superenvelopesf6AN @22#.

Another case for which the general SCME’s simplify
when the SSG is an even function of position. This impl
that all the Fourier coefficients can be made real. Then m
trix A @Eqs. ~A8! and ~A10!# is real and symmetric, and i
thus has real eigenvectors. It can be shown that now the
set of Eqs.~47! still holds, but that the second does no
Thus, from Eqs.~44!, all G ’s are real, butG1,2Þ0. The
SCME are now identical to the coupled mode equations
deep gratings@13#; solutions to these equations have be
discussed by de Sterkeet al. @13#.
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55 3641THEORY OF GRATING SUPERSTRUCTURES
We finally note that numerical examination of a wide v
riety of SSG’s suggests that the moduli of the new nonlin
coefficientsG1 andG2 tend to be smaller thanG̃. If we ne-
glect these coefficients, the SCMEs are formally identica
the nonlinear coupled mode equations~4! with constant co-
efficients @16#. Thus, for frequencies sufficiently close to
Rowland ghost gap, a nonlinear SSG then behaves ide
cally to a shallow uniform nonlinear grating; we show
above that this is also generally true for shallow SSG
Since previously a variety of solitary wave solutions for sh
low gratings have been found, these immediately carry o
to a large class of SSG’s. These solutions include bri
solitary wave solutions, referred to asgap solitonsor grating
solitons in the context of uniform gratings@19,26–28#, and
Rowland ghost solitonsin the context of SSG’s@5,16#; dark
solutions and bright solutions on a pedestal are also kn
@13,29#. Rowland ghost solitons represent high-intens
pulses propagating through the SSG without changing sh
at velocities which can be substantially below that in b
fiber. This has been verified numerically by Brodericket al.
@16#, and experimentally, in an optical fiber geometry,
Eggletonet al. @5#.

In Sec. IV we discuss bright solitary wave solutions to t
SCME for the general case in which the simplifications lis
above do not apply.

IV. SOLITARY WAVES IN ROWLAND GHOST GAPS

In Sec. III we showed that for frequencies close to a gh
gap the original coupled mode equations~4! with periodic
coefficients can be approximated by the supercoupled m
equations~42! with constant coefficients. In this section w
focus on soliton solutions to the most general version
these equations in which theG1,2 are complex.

For gratings for which the new nonlinear coefficien
G1,2 are complex and are comparable in magnitude toG̃, we
can find stationary soliton solutions using a method ear
used by Kivshar and Flytzanis@25# and de Sterkeet al. @13#.
To use this method we start from Eqs.~33!, which of course
are equivalent to the SCME~42!. Introducing the superenve
lopesu1,2 through

f l5u1e
2 i D̃t, f u5u2e

2 i D̃t, ~49!

and takingu1,2 to be real, we find

u1852D̃2u21a1u2
31a2u1

313a3u1u2
213a4u1

2u2 ,
~50!

u2851D̃1u12a3u2
32a5u1

323a4u1u2
223a2u1

2u2 ,

where the prime indicates differentiation with respect
x/V, and

D̃152s2D̃, D̃25s2D̃. ~51!

These equations can be derived from the Hamilton
@25,13#
r

o

ti-

.
-
er
t

n

e,
e

d

st

de

f

r

n

H52
1

2
~D̃1u1

21D̃2u2
2!

1
1

4
~a1u2

414a3u1u2
316a4u1

2u2
214a2u1

3u21a5u1
4!.

~52!

It is well known @13,25# that the separatrices of system~50!
correspond to stationary solitary wave solutions to
SCME @Eq. ~42!#. Thus to give a complete analysis of suc
solutions we would require a classification of all critic
points of Eq.~50!. However, here we limit ourselves to fre
quencies within the photonic band gap for whic
2s,D̃,1s, so that, from Eqs.~51!, D1,0,D2.0. Equa-
tions ~50! show that the origin is now a saddle point@13,25#;
the associated separatrix can be found via the evolu
equation for the ratior[u1 /u2 @25#:

~r 8!25~D̃21D̃1r
2!

14E~a114a3r16a4r
214a2r

31a5r
4!,

~53!

whereE is the ‘‘energy’’ associated with HamiltonianH.
Concentrating on the separatrix starting and finishing at
origin, we takeE50, and find@25,13#

r5A2D̃2

D̃1

tanh~A2D̃1D̃2x/V![A2D̃2

D̃1

tanh~Cx!. ~54!

Using this result it is straightforward to show that syste
~50! has the solution

u15A22D̃1D̃2
2

B
sinh~Cx!,

u25A2D̃1
2D̃2

B
cosh~Cx!, ~55!

where the denominatorB is given by

B5a1D̃1
2c414a3~2D̃1

3D̃2!
1/2c3s16a4~2D̃1D̃2!c

2s2

14a2~2D̃1D̃2
3!1/2cs31a5D̃2

2s4, ~56!

where

c5cosh~Cx!, s5sinh~Cx!, ~57!

and the constantC was defined in Eq.~54!.
From transformation~41! it can be seen that Eqs.~55!

represent a solution to Eqs.~42! with f25 f1* consistent
with the properties of the stationary solutions of similar sy
tems@13,19,25#. However, an important difference is that th
solutions represented by Eqs.~55! areasymmetric, due to the
presence of thea2 anda3 terms. This is illustrated in Figs. 5
and 6. Figure 5 shows the separatrix in theu1 ,u2 plane for
the parameters

V51, k̃51, D̃520.5, a151.7,
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3642 55N. G. RAPHAEL BRODERICK AND C. MARTIJN de STERKE
a2520.7, a3520.5, a450.3, a551.7; ~58!

it exhibits no symmetry, in contrast to the correspond
curves for uniform gratings@13#. The associated solution t
the SCME’s is given in Fig. 6, which showsu1

21u2
25u f6u2

as a function of position; it is also asymmetric. As an as
we mention that Hamiltonian~52! always has inversion sym
metry with respect to the origin; this implies the existence
a separatrix like that shown in Fig. 5, but inverted. Howev
the field densities associated with these solutions are
same as those in Fig. 6.

Equations~55! represent stationary bright solitary wav
solutions to Eqs.~33!, and thus, via transformation~41!, to

FIG. 5. Separatrix of dynamical system~50! for parameters
given in Eq.~58! given by Eq.~55!. SinceG1 andG2 are complex,
this implies, via Eqs.~44!, thata2 anda3 are nonzero, leading to
the asymmetry of the separatrix.

FIG. 6. Solitary wave solution corresponding to the separa
shown in Fig. 5. Shown isu1

21u2
25u f6u2 as a function of position.
g

e

f
,
he

Eqs. ~42! as well; they are a generalization of previous
found solutions for deep@13# and shallow gratings@27#.

As a final point we note that it has been shown that fo
shallow grating a one-band description as in Sec. III A can
obtained from the two-band description as in Sec. III B@30#
in the limit thatD̃→s. This limiting behavior can be recog
nized in solution~55!: asD̃1→2s, D̃2→0. Thenu1→0 and
u2 takes on a hyperbolic secant shape, consistent with
one-soliton solutions to Eq.~28!.

V. DISCUSSION AND CONCLUSION

We have applied an approach, originally developed
treating deep uniform nonlinear gratings, to deep nonlin
SSG’s, leading to a set of SCME’s. Since our method
based upon the Bloch functions of the SSG’s its validity
quite general. It represents a generalization of results
tained by others@2,8# in the limit of shallow, linear SSG’s.
We have shown that the SCME’s for deep SSG’s are sim
generalizations of the coupled mode equations for unifo
gratings, by the additon of some extra terms. Now often
extra terms obtained for deep SSG’s are quite small: in
case a deep SSG thus behaves the same as a shallow gr
Thus, we may conclude that in analogy to grating solitons
uniform gratings, solitary wave solutions~Rowland ghost
solitons! can propagate through SSG’s. These solitary wa
can be excited by a sufficiently strong external pulse incid
on the SSG, as has been demonstrated in recent experim
in optical fibers@5#. For the case in which the new terms
the SCME’s for deep SSG’s cannot be neglected, we h
proven the existence of stationary solitary solutions. W
would expect that in this case more general solutions, suc
traveling solitary wave solutions and stationary and travel
dark solutions, also exist.

As mentioned in the preceding paragraph, SSG’s of
behave like shallow uniform gratings. However, it should
noted that this resemblance fails at the two boundaries o
SSG: in a shallow uniform grating the envelope functions
continuous over each such interface, while for SSG’s
interface conditions are somewhat more complicated, and
volve the Bloch functions. This difference is not importa
when considering solitary wave solutions in inifinite med
but do play an important role when, for example, calculat
the reflection spectrum of a SSG@15#.

Our treatment shows that the criterion commonly used
the literature for a SSG to be shallow is overly restrictiv
and that simple results can be obtained under somew
more general conditions@see Eqs.~A13! and the discussion
following it#. Under these more general conditions the Ro
land ghost gaps are not equally spaced in detuning, e
cially if l is not too large@Eq. ~17!#; this contrasts standar
results in which the Rowland ghost gaps are taken to
equally spaced@3,8#. Moreover, we show in the Appendi
that the size of a Rowland ghost gap is not simply given
the associated Fourier component of the SSG@Eqs. ~A13!#.
The differences occur because a SSG can be considered
a perturbeduniform grating, which has a curved dispersio
relation ~see Fig. 2!; equally spaced Bragg resonances on
occur when the underlying dispersion relation is taken to
a straight line.

Possible generalizations of our work would involve sta
x
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55 3643THEORY OF GRATING SUPERSTRUCTURES
ing from the coupled mode equations for adeepuniform
grating, rather than those for a shallow one as we did h
@Eqs. ~4!#. One could surmise that if one could show th
these also lead to SCME’s such as Eqs.~42! ~of course with
different coefficients!, this would imply the existence of a
hierarchy, where at every length scale a similar set of eq
tions applies. It would also imply that Eqs.~42! are the most
general set of equations that apply to periodic media wit
nonlinearity, and that any such structure supports solit
wave solutions at every scale.

In conclusion, we have presented a general theory
SSG’s, leading to a set of SCME’s~42!. These reduce to
well-known results in appropriate limits, and have an appe
ing resemblance to the standard coupled mode equation
uniform gratings. We have also shown that in the most g
eral case the SCME’s possess stationary solitary wave s
tions, and we surmise that these are members of a m
general set which can travel through the SSG unimpede
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APPENDIX A: FOURIER METHOD
FOR CALCULATING BLOCH FUNCTIONS

In Sec. II we showed that the Bloch functions for a m
tagrating are solutions to eigenvalue problem~13!. Here we
outline a method which provides numerical solutions to
eigenvalue problem. We also give explicit expressions
the Bloch functions for shallow SSG’s.

Since all the functions of interest in Eq.~13! have peri-
odic components@e.g., see Eq.~15!#, following a standard
procedure in condensed matter physics@21#, we can make
the following expansions:

k~x!5(
l

k l e
i
2pl

L x, ~A1!

d~x!5(
l

d l e
i
2pl

L x, ~A2!

c1~x,t !5S (
l

a1,l e
i
2pl

L xDeikx, ~A3!

c2~x,t !5S (
l

a2,l e
i
2pl

L xDeikx, ~A4!

where the only unknowns are the coefficientsa6,l . Note
that sincek(x) andd(x) are real functions@Eq. ~5!# we must
havek2l 5k l

! , and similarly ford. In terms of expansions
~A1!–~A4!, Eqs.~13! can be written as
re
t

a-

a
ry

of

l-
for
-
lu-
re

e
ey

-

e
r

(
l

F S k1
2pl

L
2D D a1,l 2(

n
d l 2na1,n

2(
n

k l 2na2,nGei2pl
L x50,

(
l

F S 2k2
2pl

L
2D D a2,l 2(

n
d l 2na2,n

2(
n

k l 2na1,nGei2pl
L x50. ~A5!

The transformation from Eq.~13! to Eqs. ~A5! can be
thought of as being equivalent to changing from a coordin
representation to a momentum representation in quan
mechanics. Since the exponentials in the sums in Eq.~A5!
are orthogonal, the only way the sums can be zero is if all
coefficients vanish. Thus for each integerl we have the
following two equations:

S 1k1
2pl

L
2d02D Da1,l 2 (

n;nÞl
d l 2na1,n

2(
n

k l 2na2,n50,

S 2k2
2pl

L
2d02D Da2,l 2 (

n;nÞl
d l 2na2,n

2(
n

k l 2na1,n50. ~A6!

This infinite set is equivalent to the eigenvalue problem

AaW 5DaW , ~A7!

whereA is the infinite Hermitian matrix consisting of

Ai , j55 F
k1

2p j

L
2d0 2k0

2k0 2k2
2p j

L
2d0

G , i5 j

F d j2 i k j2 i

k j2 i d j2 i
G , iÞ j

~A8!

andaW is the column vector with elements

~ . . . ,a1,21 ,a2,21 ,a1,0 ,a2,0 ,a1,1 ,a2,1 . . . !. ~A9!

Equation~A7! shows that the only effect of the zeroth-ord
Fourier component ofd(x) is to shift the detunings of all the
eigenvalues uniformly, as, for example, in Eq.~8!. The
‘‘central’’ region of matrixA is
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1
2d02k1

4p

L
2k21 2d21 2k22 2d22 2k23 2d23 2k24

2k1 2d01k2
2p

L
2k0 2d21 2k21 2d22 2k22 2d23

2d1 2k0 2d02k1
2p

L
2k21 2d21 2k22 2d22 2k23

2k2 2d1 2k1 2d01k 2k0 2d21 2k21 2d22

2d2 2k1 2d1 2k0 2d02k 2k21 2d21 2k22

2k3 2d2 2k2 2d1 2k1 2d01k1
2p

L
2k0 2d21

2d3 2k2 2d2 2k1 2d1 2k0 2d02k2
2p

L
2k21

2k4 2d3 2k3 2d2 2k2 2d1 2k1 2d01k1
4p

L

2 .

~A10!
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We have thus transformed the coupled differential eq
tions ~13! into matrix equation~A7!, whereA is an infinite
Hermitian matrix. The eigenvalues ofA correspond to those
of Eq. ~13!, and thus give the frequencies of the Bloch fun
tions. The eigenvectors ofA, via Eqs.~A9!, ~A3!, and~A4!,
give the Bloch functions.

It may not be immediately clear that solving the eige
value problem for an infinite Hermitian matrix is an im
provement over solving Eq.~13!. However, this approach
has a number of advantages. Importantly we can truncate
matrix A and find the eigenvalues and eigenvectors num
cally. This is useful if we are interested in only the first fe
eigenvalues, corresponding to the location of the first f
Rowland ghosts, as the inclusion of higher-order Fourier
efficients is unlikely to alter the results significantly. To ca
culate the band diagram in Fig. 3 and the Bloch functions
Fig. 4 we approximatedA by a 2003200 Hermitean matrix.
In Fig. 3 only 15 bands can be seen, although by solving
eigenvalue problem for a 2003200 matrix we obtain 200
bands. Choosing an appropriate size for the matrix is a tra
off between accuracy and speed. The larger the matrix,
more accurate the eigenvalues, but at the cost of a lon
calculation. The required size of the matrix also depends
the SSG profile. For a SSG as in Fig. 1, which has disco
nuities, the magnitude of the Fourier components decre
as 1/unu, wheren is the order; clearly, in this case the r
quired size of the matrix is larger than for SSG’s witho
discontinuities, where the Fourier components’ magnitu
decreases more rapidly.

Results for the weak SSG limit

As mentioned in Sec. II B, there is some ambiguity as
how to define a shallow SSG. Jayaramanet al. @8#, for ex-
ample, implicitly define a SSG to be shallow if all Fouri
-
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-

he
i-

-

n

e

e-
e
er
n
i-
es

t
e

o

components includingn50 satisfy inequality~20!. How-
ever, this would lead to the conclusion thatanyuniform grat-
ing, which can always be considered to be a SSG with
finitesimal periodic perturbation with arbitrary period, is
deepSSG. For this reason one could argue for the exclus
of the dc component ofk from inequalities~20!. Below we
adopt this latter definition, as results for the more restrict
criterion of Jayaramanet al. @3,8# follow as a special case.

From the general matrix~A10! it is easy to obtain results
valid in the weak SSG limit. In the shallow SSG limit, the
the d l andk l (l Þ0) are taken to be small, and only firs
order contributions in these parameters are included. C
sider first values ofk away from the edge and the center
the Brillouin zone (kÞ0,p/L). Then all diagonal element
of matrix ~A10! differ, and the small parametersd l andk l
only contribute to second order to the eigenvalues. Con
quently, we ignore these small parameters, which only lea
the i5 j blocks of Eq.~A8! in matrix ~A10!. The diagonal-
ization of these gives rise to the dispersion relation given
the solid line in Fig. 2. Thus for values ofk away from the
center and edges of the Brillouin zone the dispersion cu
for a shallow SSG is the same as that for a uniform grat
~see Sec. II B!.

We now consider the edge and the center of the Brillo
zone. The situation is now more complicated than that d
cussed in the paragraph above because the diagonal elem
of matrix ~A10! are now two-by-two the same. For this re
son the small off-diagonal elements of matrix~A10! contrib-
ute linearly to the eigenvalues, and thus they cannot be
glected. Retaining only first-order contributions, it can
seen by inspection that matrix~A10! can be block-
diagonalized by simply interchanging rows and colum
each block is a 434 submatrix. The submatrices can b
written as
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F2d02D l cosw l 2D l sinw l 2d l 2k2l

2D l sinw l 2d01D l cosw l 2k2l 2d l
2d l 2k l 2d01D l cosw l 2D l sinw l

2k l 2d l 2D l sinw l 2d02D l cosw l

G , ~A11!
t
;

ap

-

u

a

t
ap
.

wherel is a nonzero integer, and

D l cosw l 5
l p

L
,

D l sinw l 5k0 . ~A12!

Even values ofl occur atk50, while odd values occur a
k5p/L. The submatrices~A11! can easily be diagonalized
the four eigenvalues are

D52d01D l 6uk l 2d l sinw l u,

D52d02D l 6uk l 1d l sinw l u. ~A13!

This means that, for shallow SSG’s, the Rowland ghost g
are centered about the detuningsD l @Eq. ~17!#, and have
widths 2uk l 6d l sinwl u. The more restrictive results of Ja
yaraman et al. @8# are obtained ask0→0, so that
D l 5l p/L @Eq. ~17!#, and sinwl 50 @Eq. ~A12!#.

Thus far we have only used the eigenvalues of the s
matrices~A11!. Via Eqs. ~A3! and ~A4! the eigenvectors
immediately lead to the Bloch functions. Thus using norm
ization ~24! and convention~23!, the Bloch function at
D52d01D l 1uk l 2d l sinwl u, at the top of Rowland ghos
gap l , is given by
m-

ec

lec

l.

J

.

gg
s

b-

l-

c1~x!5
i

A2L
~sinw l e

2 iQ l 1cosw l e
1 iQ l !,

c2~x!52
i

A2L
~cosw l e

2 iQ l 1sinw l e
1 iQ l !, ~A14!

where

Q l 5
pl

L
1
1

2
arg~k l !. ~A15!

Similarly, at D52d01D l 2uk l 2d l sinwl u, at the bottom
of Rowland ghost gapl ,

c1~x!5
1

A2L
~sinw l e

2 iQ l 2cosw l e
1 iQ l !,

c2~x!5
1

A2L
~2cosw l e

2 iQ l 1sinw l e
1 iQ l !. ~A16!

Note that both Bloch functions satisfy Eq.~23!, as re-
quired. Finally, the Bloch functions of the photonic band g
centered aroundD52d02D l can be found from Eqs
~A14! and ~A16! by replacingw l by w l 1p/2.
un.
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