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Theory of grating superstructures

N. G. Raphael Broderickand C. Martijn de SterKe
School of Physics and Australian Photonics Cooperative Research Centre, Australian Technology Park, Eveleigh, 1430, Australia
(Received 9 October 1996

We develop the theory of linear and nonlinear grating superstructures, gratings in which the parameters vary
periodically with position on the scale of typically about 1 mm. Following earlier work in semiconductors,
these have now been written in optical fibers. We develop the theory by introducing assgtenénvelopes
envelopes of the usual envelope functions of the grating structure. We show that under very general conditions
these superenvelopes satisfy a set of supercoupled mode equations, and that these equations have solitary wave
solutions.[S1063-651X97)11103-3

PACS numbds): 03.40.Kf, 42.81.Wg, 42.79.Dj

I. INTRODUCTION tive index profile is included. But this approach fails when
the grating is too deep, i.e., when the refractive index modu-
Recent developments in grating writing techniques in op4ation depth is too larg¢12,13. Similarly, the Fourier de-
tical fibers allow for the fabrication of a wide range of non- scription is valid for weak SSG's, but it fails when the SSG
uniform Bragg grating$1]. Among the more important de- is sufficiently deep. We see below that deep superstructures
signs are superstructure grating<SSG’'S or optical  can easily be obtained in fiber geometries, even though the
superlattice$2]. These are gratings in which the parametersgratings themselves are shallow; then an alternative to the
are periodically modulated with a period of typically Fourier description must be used for the quantitative descrip-
100 um—1 cm. Using different techniques, a variety of peri-tion of an SSG.
odic profiles can be fabricatd@-6]. In Fig. 1 we show the Recently a convenient method was developed by de
variation of the coupling strengtk, which is proportional to ~ Sterkeet al.[12,13 to treat deep Bragg gratings. It leads to
the refractive index modulation, with position for a SSG.a set of coupled mode equations which are similar to those
Note that the strength varies periodically, with a period ofwhich follow from conventional coupled mode theory. De
9 mm, and that the repeated profile has a triangular shap&terke’s approach relies on the Bloch functigad] of the
The periodic modulation of the SSG results in a comblikegrating and thus a knowledge of the linear properties of the
reflection spectrum with the various peaks, the “Rowlandgrating is required. We have adapted this approach so that it
ghosts,”[7] being closely spaced in frequency. can be applied to treat deep SSG’s; it makes use of the
In semiconductor geometries, SSG’s have been used iBSG’s Bloch functions. We reported on some preliminary
tuneable distributed feedback las€8s9], something which ~ results earlief15,16. Here we give the full theory and dis-
has also recently been achieved in optical fijdisIn opti- ~ cuss the implications of our results in detail. In our discus-
cal fibers, SSG’s have also been used as multichannel dision we follow closely the notation of RefL3], as many of
persion compensators in wavelength division multiplexingthe results established there carry over to SSG’s. Our theory
systemdg10]. It should be mentioned that sometimes an SSG
is written unintentionally if the phase mask used to write a L N L
uniform grating has periodistitching errors[6].
Of course the properties of SSG’s can be found by solving
the relevant coupled mode equations numerically, but this
does not give much physical insight. Therefore, in the appli- —
cations mentioned above the SSG has often been assumed to 7
be “weak” allowing a Fourier description to be usg8l. In E
this description the different reflection peaks are well sepa- o 2
rated, and the peak reflectivity of thjéh peak is given by ~
tanr?(KjL), wherelL is the length of the grating an is the
strength of thejth component in the Fourier decomposition < 1
of the SSG.
The Fourier method mentioned above is similar to the
standard coupled mode analysis of uniform Bragg gratings oL L]
[11], in which only a single Fourier coefficient of the refrac- Lo e b b L
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55 THEORY OF GRATING SUPERSTRUCTURES 3635
is also well suited to problems involving optical nonlineari- wAn(x)

ties. This is of particular importance as the first results of K(X)= N

high-intensity pulse propagation experiments in SSG's, writ-

ten in the optical fibers, were recently reporféd

2wén(x) 1do

The outline of this paper is as follows. In Sec. Il we S(X)= ————= —,
present the coupled mode equations for SSG’s, and analyze A 2 dx
the linear properties of SSG’s. In Sec. Il we present the
evolution equations for the superenvelopes in a nonlinear = 47Tn0n(2) (5)
SSG. We use a one-band approximation, leading to the non- \NZ

linear Schrdinger equationSec. Il A), as well as a two- _ _ _
band approximationSec. Il1B), leading to supercoupled are all real. Furthery, is the group velocity aiw, in the
mode equations. Solutions to the supercoupled mode equabsence of a grating, is the free space wavelength, aid

tions are discussed in Sec. IV. the vacuum impedance. The parametefx) gives the
strength of the grating, whilé(x) describes the detuning of
Il. COUPLED MODE EQUATIONS the Bragg frequency fromw,. Nonlinear effects are de-

scribed byI', which we take to be constant in space, al-
We consider one-dimensional propagation through a gratthough this is not essential.

ing with a nearly periodic refractive index, i.EL7], Though ultimately we are interested in gratings for which
both « and & are periodic, and”# 0, we now briefly con-
sider uniform linear gratings for whick and 6 are constant
andI'=0, as some of the concepts carry over. Under the
conditions discussed above, we first consider the uniform
where 8n, An, and 9 are, in principle, all slowly varying grating’s dispersion relatiofl4,19. Substituting
functions of position, whilen, andd, are a fixed reference .
refractive index and period, respectively. Note that the actual E.(xt)=A e vglt), (6)
periodd of the grating may be varied through variation of . )
9(x). In addition to the spatial dependence in Et), we where the detunin@\ is related to the actual frequeney
take the grating to exhibit a Kerr nonlinearity; the refractive through
index thus depends on intensity through

27X

a0 + 9(X)

n(x)=ng+ 6n(x)+An(x)cos( , (1

w— Wo
A= : 7
n(l)=n+n@1, ) Vg
wherel is the intensity anch® is the nonlinear refractive We find that Egs(4) lead to two coupled linear algebraic
index. equations. Nontrivial solutions can be found when
In the usual applications, gratings couple light with a >
wave number arountly= =+ 7/dy, to ko= T 7/d,, i.e., they A==+ r"+k ®)

reflect light with wave numbek, [11,17). Definingwg as the
frequency akg, then for light with a frequencw such that
w=~wg, propagating through a Bragg grating, one may ap
proximate the electric field 47]

This relation is indicated by long-dashed lines in Fig. 2; sub-
scripts on the symbols should for now be ignored. Figure 2
shows that for- §— k<A < — §+ « no plane-wave solutions
exist; this corresponds to the photonic band gap of the uni-

E(x.t)= [E.(x,)eti kot 92 L E (x 1) ikox+9/2) form grating. The center of the photonic band gap, at

. A=— 6, corresponds to the Bragg frequency.
xXe l@ttc.c, ©))
A. Linear properties of SSG

where c.c. indicates the complex conjugate, and we have
assumed the grating to be shallow. The functiBnsare the
slowly varying envelopes of the forward and backwar
propagating modes. With this ansatz for the electric field w
can approximate Maxwell’'s equations p}8,19

As mentioned in Sec. |, our procedure for deep SSG's
grequires knowledge of the Bloch functions of these struc-
dures. To define these we write tHmear coupled mode
equations a$l13]

. i JE
18Er 1 9E. (x) E_+8(x) E,+2T| E_|2E vyt ME, ©
ax vy ot OV ES ¥ - Y9
+T| E4|2E,=0 whereE is the vector with elementE(, ,E_), andM is the
' operator defined as
JE_ i 9E_ .
= + + 2 —idlgx— &(x) — k(X)
'Tox g ot k(x) B4+ 0(x) E_+2I'| EL["E- M (x)= . . (10
— k(X) +idlox— 8(X)
+T|E_|?E_=0, 4

For SSG's, the key property &fl is that it is periodic with
where[17-19 period A, so that
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tions of M. For a periodic system it is expected that for fixed
k, the eigenvalues dfl are discrete, as is true in quantum
mechanicq20,21. This implies that the allowed detunings
A, corresponding to the eigenvalueshdf can be labeled by
integers. Thus for a SSG each Bloch function has two
“quantum numbers”: an integen which labels the band,
and the(rea) reduced wave numbér Usually one considers
the eigenvalued ,, to be functions ok, which immediately
leads to the photonic band structure: the photonic band dia-
gram for a SSG is obtained by plotting thg, versusk. We
illustrate these general statements in Sec. I B.

B. Photonic band structure of SSG’s

Before illustrating the discussion in Sec. Il A with a com-
plete photonic band diagram, we first treat the limiting case
where the SSG is a small perturbation to a uniform grating.
This allows us to find the approximate positions of the Row-
land ghost gaps in the dispersion relation analytically. For a

general SSG, leky and &, be the zeroth-order Fourier com-

FIG. 2. The dispersion relation for a uniform grating, given by ponents of«(x) and 8(x). The SSG is then considered a
Eq. (16), is indicated by the dashed line. The introduction of anperturbation, characterized by the other Fourier coefficients,

infinitesimally weak periodicity with period causes the dispersion to a uniform grating with strengtk, and center frequency

relation to fold in the first Brillouin zone between 7/A (solid A=~ &,. The dispersion relationship for the uniform grating
line). is [Eq. (8)]

M(x+A)=M(X). (12) A=—8y* K>+ k3, (16)

where the wave numbek can take on any valuglong-
dashed lines in Fig.)2 Introducing an infinitesimally weak

We now search for the eigenvectods, with elements
(4 ,p_) of M, by setting[13]

E=e ivght (12 periodic perturbation with period, we now apply the stan-
' dard results from condensed matter physisse the last
so that paragraph of Sec. Il Ak represents a reduced wave number
within the first Brillouin zone:— w/A<k<+ /A [20,21].
MV =AY, (13)  As mentioned, this restriction & implies thatA is now a

o multivalued function ok, as illustrated by the solid lines in
because of the periodicity d¥l we refer to the¥ as the fjg 2,

Bloch functiong 14]. Folding the uniform grating dispersion relation into the

We have now recast the coupled mode equations into st Brillouin zone causes crossings of the dispersion rela-
Schralinger-equation-like formalism, wittM playing the {jon at the edges and in the center of the Brillouin zone at
role of the Hamiltonian. Indeed many of the results fromgetynings

guantum mechanics concerning periodic potentials can be
applied to SSG’s with little modifications. The most impor- /) 2
D/=—50+sgr(/)\/(T) +Kg el (17
with the exception of/=0 (see Fig. 2 The function

tant of these is Bloch’s theorem according to which the so-
lutions to Eq.(13) with M satisfying Eq.(11) must have the
property[20,21]
sgn () is defined by sg()=1 if />0, sgn(0=0 and
sgn¢)=—1 if /<O0. Itis at these detunings that gaps open
for some real numbék. This restatement of Bloch’s theorem up due to Bragg reflection as the strength of the SSG in-
can be proven by a straightforward adaption of, for examplegreases.
the approach in Zimah20]. Equation(14) implies that an For weak SSG's previous authors have std&dhat the
eigenfunction ofM can be written as width of the gap centered arourd, is 2|«,|, wherex, is
the strength of thenth Fourier coefficient ofc; we confirm
this in the Appendix, though we also prove somewhat more
general results valid under less restricitve conditions. But for
a deep SSG these predictions break down and a different
with the associated eigenvalde As in solid-state physics formalism must be used. Nevertheless the gaps occur at de-
[21,20, the functionsh. are periodic with period\. The tunings given by Eq(17), whenk=0 ork=#/A. The open-
real numbelk is the reduced wave number, which is usually ing of gaps in the dispersion relation can be seen in K@), 3
chosen in the first Brillouin zone, where which shows the full dispersion relation of the SSG in Fig. 1.
—m/A<ks+a/A; it labels the eigenvalues and eigenfunc- We took J in Eq. (1) a constant, anédn=An, as is usually

P(x+A)=e " (x), (14)

_ h.(x) ikx
T(x) h_(x) e (15
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e e e e e S B O B B where «,, is the strength of theith Fourier component of

i/(a) T~ [ (b) k. For the various reflection peaks to be independent, we
0o b —~L_—4 F require the associated gaps not to be too close. We thus find

L 1 [ that for a superstructure to be shallow, it is necessary that
10 = = - = 7

T~ 1 [ | knl A< §~1, (20

for all appropriate Fourier components. If at least one of

the inclusion in(20) of n=0, the Fourier component associ-

O these inequalities is not satisfied, then the grating cannot be
~10 L/—\__ I treated as shallow over its entire spectrum. At this point we
Z\/Z = note that there is some ambiguity as to how one would define
L ——_1 F —s a shallow SSG. The implicit choice in the literatur@,g]
-20 T~ 1 T corresponds to applying inequalif®0) to all Fourier com-
- /I\ 1 b | 3 ponents of the SSG. However, in the Appendix we argue that
1

-1 0 1 0.5 0 ated with the underlying uniform grating, can lead to para-
k (units of m/A) reflectivity doxical results. We return to this in Sec. A1. From Fig. 1 we
estimate the left-hand side of ER0O) to be about 0.7 for
FIG. 3. (a) Band diagram for the triangular SSG discussed in theN = * 1, confirming that, by either criterion, the SSG is not
text and shown in Fig. 1. The Rowland ghost gaps are centered ophallow at all detunings.
the detunings D,~5cm, D;~15cm?!, Dg~—2 cm}
D ;~-55cm* D ,~—9cm?, etc, given by Eq(17). The C. Properties of Bloch functions
corresponding reflection spectrum is shown(m; note that the o .
Rowland ghost gaps correspond to detunings with high reflectivity,. B€fore continuing we need to establish some key proper-
ties of Bloch functions. From Ed10) it can be seen that if
the case in optical fiber$l7], so that, with Egs.(5), " with componentg w+(x),¢_(x)] is an eigenfunction of
5=2x. In Fig. 3a D,~5cm’, D;~15cn} M, then for any real numbe§ so is
Do~—-2cm?!, D_;~-55cm?i D_,~—9cm? etc, o
consistent with Eq(17). v= eié( *> (22)
For most SSG’s analytic solutions to E(L3) are not
known and the Bloch functions and dispersion relation must
be found numerically. A method to do this is described in thewith the same eigenvaluk asW¥. Furthermore Bloch’s theo-
Appendix [21]; the bands in Fig. @) were obtained using rem implies that if¥" has a reduced wave numbler then
this method. In Fig. @) we show the associated reflection ¥ has the reduced wave numbek. Physically the solution
spectrum. Clearly each peak in the reflection spectrum corgr corresponds to the same solution®sbut moving with
responds to a gap in the dispersion relation for the SSGhe opposite group velocity. This implies that the photonic
Following the notation used to describe periodic errors inhand diagram must have inversion symmetry aboa0, as
diffraction gratings[7] we refer to the reflection peaks as js seen in Fig. ®).
Rowland ghOStS, and to the Corresponding gap in the disper- However’ since gaps occurlats O'i 7T/d, if ¥ is a Bloch
sion relati_on as Rowland ghost gaps. We note that the stafgnction at the top or bottom of a gap, then solisdefined
dard Fourier treatment of shallow SSG&ee Sec.)lrequires by Eq. (21), and furthermore it is associated with the same

that the reflection peaks of the SSG are sufficiently spaced tBoint of the dispersion relation a&. Since for a particular
be able to treat them as independent. Though this is a goqd

approximation for the reflection peaks with>5 and
A< —10 in Fig. 3b), it is clearly suspicious for the strong
central reflection peaks, for which the spacing roughly equals
the width.

We can now formulate a rough criterion for a superstruc-f ;
. or some phase angiin Eq. (21). If we make the transfor-
ture to be deep. The centers of two adjacent gaps at the edﬂ?ation\lfiexp(—i;%\lf, tr?egw E)q.(22) implies that

or the center of the Brillouin zone are spaced by a frequency,
approximately given bysee Eq(20)]

andA the (normalized Bloch functions are unique up to a
constant phase, we must then have

V= (22)

- ( P(x) ) 23
- P(x)* |
T (18
We now choose the phases #f and _ such that at the
) ) ) edges of any Rowland ghost gap EB3) is satisfied.
As shown in the Appendix below EqA12), in a shallow Figure 4 shows the moduli of the Bloch functions at the
grating the width of a gap is of ord¢s] top (solid line) and bottom(dashed ling of the Rowland

ghost gap centered dd;~1.5 cm 1. By comparing Fig. 1
20| k|, (199  of the grating profile and Fig. 4 we see that at positions
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T T T T T T T T T T T T T Where
i : (e (e,
A2 U ] whereh is the column vector with the elementb.(,h_)
- 1 [see Eq(15)] and g, is the Pauli matrix diag(%;1). At the
05 - edges and in the center of the Brilouin zone the group veloc-
h”z i ] ity vanisheq see Fig. 83)], so that the first of Eqg25) with
= ] Eq. (26) implies that|., |?=|y_|?, confirming that the net
0.4 B N energy transport vanishes.
i ] I1l. EVOLUTION EQUATIONS FOR SUPERENVELOPES
03 B ] Here we present the derivation of the supercoupled mode
T T S S R equations which describe light propagation through a nonlin-

0 0.2 0.4 0.6 0.8 ear SSG. Briefly, this approach can be understood as follows.
iti It is well known that applying standard coupled mode theory
position . X
to a uniform grating allows one to replace the Maxwell equa-
tions with periodic coefficients, with coupled mode equa-
tered around\~ 1.5 at the edge of the Brillouin zone. The solid line tions with constantcoefficients. Such an approach is valid

is |, (\)|2=|w_(x)|2 at the top of the gap, while the dashed line fora range of frequencies about one of t'he Bragg frequencies
gives that at the bottom. Recall that according to the discussion iﬁ)f the periodic structure. For SSG's, which are characterized

Sec. IIC the square moduli of the two components of a BlochPY & doubly periodic refractive indesee Eq(1)], applying
function are the same. standard coupled mode theory then allows us to replace
Maxwell's equations by the coupled mode equations with

where the grating strength vanishes the Bloch functions havieriodic coefficient$Egs.(4)]. Presumably, then, applying a

a constant intensity. This is as expected, as in these regio®@upled-mode-like theory to the latter would be expected to
light freely propagates. result in a set of equationsupercoupled mode equations

with constant coefficients. Such a supercoupled mode theory
would be valid close to one of the Rowland ghost gaps
shown in Fig. 8a). Below we show this to be true.

prove useful when deriving the supercoupled mode equagquations for the superenvelopes. First we expand the enve-
tions. Eigenvalue equatioil3) is equivalent to Eq(9) from  |opes in terms of a single Bloch function of the field enve-
Ref. [13] Much of the derivations fO”OWing this equation |opeS (Sec‘ |||A) which leads to the nonlinear Sc'hﬁoger
can be carried over straightforwardly to the present case. Igquation. In Sec. I1l B we expand in terms of two such Bloch
particular, we adopt the normalization functions, leading to the supercoupled mode equatiSes.
nC).

FIG. 4. Bloch functions at the top and bottom of the gap cen-

D. Preliminary results

L
f dx¥t w=N, (24)
0 A. Single-band approximation:

. . . L Th li Schradi ti
wherelL is the normalization length over which the periodic © noniinear schradinger equation

boundary conditions are applied, aNe=L/A is the number Here we take the envelop&sof the form
of periods inL. A feature of normalizatior(24) is the ab- _ oAt

sence of a nonconstant metric or kernel; this should be con- E(x,)=a(x,)Wnk(x)e ook, (27
trasted to related systems where the refractive ifd&x or
the dielectric functiori22] play this role. Apart from the sign
then, convention(23) and normalization(24) uniquely
specify the Bloch functions at the edges of each Rowlan
ghost gap.

where ¥, (x) is a Bloch function of the superstructure,
while A, indicates its eigendetuning. Heve,,(x) is taken
o0 be at the edge of one of the Rowland ghost gapsh as
hose in Fig. 3, though this is not essential. In EQ?7),
a(x,t) is a function which varies slowly compared to the

Using ak-V expansion as in Ref13], it can be proven Bloch function of the superstructure; we thus require enat
that the group velocity [, and the group velocity dispersion varies slowly compared t4 . By the same argument we also

A associated with a position on the dispersion relation __ - I )
- m? : requirea to vary slowly in time on the scale ob .
indicated byk andn are given by g y y <o)

Sincea(x,t) varies slowly in space and time on the scale of
IA o the usual envelope functions of the electric field we refer to it
as a superenvelope.
We now substitute ansat?27) for the field into the
) coupled mode equations and find the evolution equation for
" :‘9 Ank: _ Vpn(K)vnp(k) (25) the superenvelopa(x,t). As mentioned, the details of this
kT gk pzn  Ap—Ank procedure are virtually identical to those described in Sec.

!

nk:W:Unn k),
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V B of Ref. [13] and so we do not repeat them here. Thewhich is the approach we concentrate on henceforth. We take

only difference is that the envelop&s. are complex, while

the ¥, to be Bloch functions at the upper and lower edges

the actual electric and magnetic fields are, of course, reabf one of the Rowland ghost gafiSig. 3(a)], respectively, as

We therefore do not need to take the real part of @) as
was done in the corresponding E§8) in Ref.[13]. Follow-

this describes the situation of most interest. Writing the
eigendetunings a4, ,, we define

ing now Ref.[13] we find thata(x,t) satisfies a nonlinear

Schralinger equation, 1
ger eq Ao=5(Ay+4y), (32
d%a

Jga + alal?aco
K972 alal*a=0.

+A] @
at nk ox

1
1 +§A; (28

corresponding to the center of the Rowland ghost gap under
consideration. Finally, thé, (x,t) in Eq. (31) are slowly
varying superenvelope functions. Ansd®l) is similar to
Eq. (80) in Ref.[13], and the analysis in Sec. VI B straight-
forwardly carries over to SSG'’s; again, the only difference is
that theE. are complex functions, while the electric and
magnetic fields are real.

Following then the derivation of de Sterk¢ al.[13], the
superenvelope$, | can be shown to satisfy a set stiper-
coupled mode equatioref the form

Here A|, is the group velocity associated with,, while
A7 is its group velocity dispersiofEgs.(25)]. Finally, « is

an effective nonlinearity, which is given in terms of a non-
linear overlap of¥,:

— - 4 2 4N\ — - 2

a=T [dx(ly | alyy P4l 1) =T [ dxu P2,
0 0

(29

where they. are the components oF,,, and for the last
equality we have used E@23), so that it is only valid at
k=0 andk= = x/A. The nonlinear Schainger equation is
well known to have soliton solutions. The significance of
these solutions in the context of SSG’s is discussed in the
sections below.

The accuracy of one-band approximations, wheneas
taken to be at the edge of a photonic band gap, was studied
before[22]. It was found that it is valid only over the narrow
range of frequencies for which mixing of Bloch functions
can be ignoredi22]. It is likely that the one-band approach is Here
better when,, is taken to be away from any of the gaps, ’
but since grating effects are then not very prominent this is
not of primary interest.

Using the explicit expressions for the Bloch functions inwhere the last equality follows from E¢32), and
the center and at the edges of the Brillouin zone in the shal-
low SSG limit[Egs.(A14) and(Al16)] it is easily found that
in this limit

fu of,
=0’fu+V&_ ay

at |fu|2fu_a’2|fl|2fl

— ag(2F 2+ F56F) — ag(2]F) |21, + F7E5),
of
—of Voo
— (2| + 131 — ap(2] i [PH + ).
(33

a3|fu|2fu_a5|fl|2fl

O':AU_AO:AO_A| ’ (34)

V:iUu| (35)

is real, as can be ascertained from definit{@6) and con-

A'=0, vention (23). Finally, the « are various nonlinear overlap
integrals of the Bloch functions, defined as
A// COSP/ L
" =0T [ dxu)*

ar .
a= H(Z-l—smz(p/)N, (30

L
a= 3 [ Ay Pt ),

where theg , are defined in EqSA12). Because the group
velocity always vanishes fdk=0,7/d, the first of these is
true for any SSG. Further, througth, o depends explicitly
on the normalization length. This can easily be avoided by
defininga(x,t) =a\/N [22], for which the nonlinear param-
eter does not depend d at all.

L
as=30 [ OX i ),

L
a4=Ffo dX{4|¢+u¢+||2+[(¢+|¢iu)2+(lﬂiﬂhu)z]},

B. Two-band approximation L
PP a5=6Ff0 dx| g (36)

A more general approach than E®7) involves two

Bloch functions and two superenvelopes, ) ) )
wherey, | is the first element o', ;. Note that it follows

E(x,t)=[f, (D)W (x)+ f;(x,t)¥ (x)]e "veto!, (31)  immediately from the definitions that ad; are real. In ad-
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dition, using the method described in REZ3] we can find -
inequalities pertaining to the magnitudes of the First note I'=gy(aat2astas),
that by inspection

1
a4$a_456fl_dx|z//+uz//+||2. (37) I=gyl(- a1t as)—2i(az+as)],
0

Then, using the method in R3] it is straightforward to :i _ b o) — i (o
prove the Schwarz inequality T2 8V[(al baytas)—4i(az—as)] (44)
ajas=ai=aj. (38)  ThusT is real, whileT'; , generally are complex. As men-
) ) ) ] ] tioned, Eqs(42) are identical to the coupled mode equation
Another inequality can be formulated if one first defines oy deep gratings, except that in the latter case, for

k=0,7/d, ay=a3=0, so that all nonlinear coefficients are

L . . .
aZsa—ZEGI dx| . o2, real. We note that despite, , being complex in Eqgs(42),
0 we find that
- - 3 J 2 2 J 2 2
ag=az=6 | dx|y. y3,|. (39 UG PHI P =—(f 2=, (45
0

Then write the argument of the right-hand side of the firstindicating that energy is conserved, as required for a lossless
inequality (39) as |, |2X| ¢, .|, and that of the second system.

as |, y|®X | uth+|. Applying the Schwarz inequality to  Using inequality(38) it is easy to show that

each of these, it can then be shown that ~

[Ty, [T |<T, (46)

a1a52 a2a3> arg. (40)
wherel’;, indicates the real part df; . Also, using inequal-
Equations(33) are identical to Eqs(100) in Ref. [13]. ity (40) we can formulate an inequality in terms of the imagi-
However, in the subsequent step in this reference only theary parts of"; ,; however, it appears not to be very useful,
special casek=0,7/d, where a,=a3=0, is considered. and we do not give it here.
Note that in the present case of SSG’s, we also restrict our- We now first consider the shallow SSG limit of the results
selves to the center and edges of the Brillouin zone, but nowlerived above. By substituting expressidad4) and (A16)
a,, a3 generally do not vanish. for the Bloch functions of a shallow SSG into definitions
(36) it is found that

C. Transformation to supercoupled mode equations
= = O’ = = 3 y 4
Equations(33) take on a more familiar form if we intro- *2= %3 1™ *sT 3y “7
duce the superenvelopés through[13,24 consistent with inequality38). Thus we find from Eqs(44)
= thatI'; ,=0. The SCME’s for a shallow SSG thus have the
fo=fFif,. (41) : s .
same form as the coupled mode equations fshallow uni-
In terms of these new envelope functions the supercouplefprm grating [2] [i.e., Egs.(4) with constant coefficients
(A16) it is found that in the shallow SSG limit
of, i oofy

i— +v7+7<‘f,+1“|f+|2f++21“|f,|2f++1“1(|f+|2

'fz—v(2+sin2<p/). (49)
FF_ 2+ (Tyff% + T3 ) f, +Tof2 1% =0, ?

Thus just like coefficiente in the nonlinear Schutinger
equation[Eqg. (30)], I' depends on the normalization length,
via N; it is removed by considering the evolution of the
) e e 2 e superenvelopes. N [22].

D+ (o f P+ +TT 2 =0. Another case for which the general SCME'’s simplify is

(420  when the SSG is an even function of position. This implies
that all the Fourier coefficients can be made real. Then ma-

af = i af_ =~ =
. ! ~ 2 2 * 2
it e AL T 2R 2T 2+ T (I

Here trix A [Egs.(A8) and (A10)] is real and symmetric, and it
thus has real eigenvectors. It can be shown that now the first
~ O set of Eqgs.(47) still holds, but that the second does not.
v (43 Thus, from Egs.(44), all I''s are real, butl'; ,#0. The

SCME are now identical to the coupled mode equations for
and the nonlinear coefficients are linear combinations of theleep gratingg13]; solutions to these equations have been
a; [Egs.(36)], given by discussed by de Sterlat al. [13].
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We finally note that numerical examination of a wide va- 1 o~
riety of SSG's suggests that the moduli of the new nonlinear 7=~ 5(Aui+AzU3)

coefficientsI'; andI', tend to be smaller thah. If we ne-
glect these coefficients, the SCMEs are formally identical to
the nonlinear coupled mode equatio@d$ with constant co-
efficients[16]. Thus, for frequencies sufficiently close to a
Rowland ghost gap, a nonlinear SSG then behaves identi- (52

cally to a shallow uniform nonlinear grating; we showe,d It is well known [13,25] that the separatrices of systd50)

above that this Is also generally true for shallow SSG S'correspond to stationary solitary wave solutions to the

|Slvr\‘/cerp:iiwouh5|¥/agang?/ oLséoI{thary Wi?%/;sg:utlcins forrr Sh‘?‘/I'SCME[Eq. (42)]. Thus to give a complete analysis of such
ow grafings have been found, these ediately carry o eéolutions we would require a classification of all critical

tol? large classl, ?f SSG’fS' TZetse SOIUt';.)tnS 'nCIUd? brigh oints of Eq.(50). However, here we limit ourselves to fre-
solitary wave soiutions, reterred 1o gap Solitonsor grating quencies within the photonic band gap for which
solitonsin the context of uniform gratinggl9,26—-28, and ~A=+ 0 sothat from Eqsi51), A,<0, A,>0. Equa
Rowland ghost solitonis th text of SSG'§5,16]; dark . ¢ 7  TOT EASOL, 1Y, B2 :
owiand gnost SOltons the context o $5,16], dar ons (50) show that the origin is now a saddle pojiB,25;

solutions and bright solutions on a pedestal are also know ated i be found via th luti
[13,29. Rowland ghost solitons represent high- |nten5|ty € associated separalrix can be found via the evolution
gquatlon for the ratio=u;/u, [25]:

pulses propagating through the SSG without changing shap
at velocities which can be substantially below that in bare
fiber. This has been verified numerically by Broderatkal.

1 4 3 2.2 3 4
+ Z(a1u2+4a3u1u2+ 6auius+4ayuius+ asuy).

(r")2=(2,+A,r2)

[16], and experimentally, in an optical fiber geometry, by +A4E(ay+4agr +6aur’+ a3+ asr?),
Eggletonet al. [5].
In Sec. IV we discuss bright solitary wave solutions to the (53)

SCME for the general case in which the simplifications listed

above do not apply. where E is the “energy” associated with Hamiltoniak.

Concentrating on the separatrix starting and finishing at the
origin, we takeE=0, and find[25,13
IV. SOLITARY WAVES IN ROWLAND GHOST GAPS

In Sec. Ill we showed that for frequencies close to a ghost r = -/ —-=—tanl"( V—A1AXIV)= /[ —-=—tanr(Cx) (59

gap the original coupled mode equatio@y with periodic

coefficients can be approximated by the supercoupled mo
equations(42) with constant coefficients. In this section we
focus on soliton solutions to the most general version o

these equations in which tHe, , are complex. 5
F . . ! . . - ZAlA
or gratings for which the new nonlinear coefficients —
) it~ ug smI*(Cx)
I'; , are complex and are comparable in magnitud€ tave B

can find stationary soliton solutions using a method earlier

qﬁsing this result it is straightforward to show that system
I(50) has the solution

used by Kivshar and Flytzanj&5] and de Sterket al.[13]. ZAEAZ
To use this method we start from Eq83), which of course U=\ g coshCx), (55
are equivalent to the SCM&2). Introducing the superenve-
lopesu; , through where the denominatd is given by
f|:Ule7izt, fu:uzefizt, (49) B=alA%C4+4a3(—A§’A2)lIZC?’S+ 6&4(_A1A2)C252
+hay(— A A3 Y2cS + agASs?, (56)
and takingu, , to bereal, we find
where
Uj = —AjUp+ agud+ apus + 3azu U+ 3a,uius, c=cosiCx), s=sinh(Cx), (57)

50
%0 and the constan® was defined in Eq(54).
From transformation(41) it can be seen that Eq$55)
represent a solution to Eq$42) with f_=f% consistent
where the prime indicates differentiation with respect towith the properties of the stationary solutions of similar sys-
x/V, and tems[13,19,25. However, an important difference is that the
solutions represented by Eq585) areasymmetricdue to the
Xe ok Kmo—X 51) presence of the:, anda; terms. This is illustrated in Figs. 5
1= 7078 BT 07A ( and 6. Figure 5 shows the separatrix in theu, plane for
the parameters
These equations can be derived from the Hamiltonian _
[25,13 V=1, k=1, A=-05, a;=1.7,

Up=+A1U;— agUs— asud—3a,u,us—3a,U3U,,
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FIT T T T[T T T [T T T T[T T I T[T Egs. (42) as well; they are a generalization of previously
- found solutions for deefil3] and shallow gratingg27].

As a final point we note that it has been shown that for a
shallow grating a one-band description as in Sec. Ill A can be
obtained from the two-band description as in Sec. I[BB]
in the limit thatA— o-. This limiting behavior can be recog-
nized in solution(55): asA1—>20 A,—0. Thenu;—0 and
u, takes on a hyperbolic secant shape, consistent with the
one-soliton solutions to Eq28).

V. DISCUSSION AND CONCLUSION

We have applied an approach, originally developed for
treating deep uniform nonlinear gratings, to deep nonlinear

O b b 1T SSG’s, leading to a set of SCME’s. Since our method is
—-0.5 0 05 1 1.5 based upon the Bloch functions of the SSG's its validity is
quite general. It represents a generalization of results ob-
U1 tained by other$2,8] in the limit of shallow, linear SSG's.

We have shown that the SCME’s for deep SSG’s are simple

FIG. 5. Separatrix of dynamical systefB0) for parameters generalizations of the coupled mode equations for uniform
given in Eq.(58) given by Eq.(55). Sincel'; andI', are complex,  gratings, by the additon of some extra terms. Now often the
this implies, via Eqs(44), that @, and a5 are nonzero, leading to extra terms obtained for deep SSG’s are quite small: in this
the asymmetry of the separatrix. case a deep SSG thus behaves the same as a shallow grating.

Thus, we may conclude that in analogy to grating solitons in

@,=—07, az=-05 @,=03, as=17, (58 uni_form gratings, solitary wave solutior(sRowIanq ghost

solitong can propagate through SSG’s. These solitary waves

can be excited by a sufficiently strong external pulse incident
it exhibits no symmetry, in contrast to the correspondingon the SSG, as has been demonstrated in recent experiments
curves for uniform gratingg13]. The associated solution to in optical fibers[5]. For the case in which the new terms in
the SCME’s is given in Fig. 6, which shovu§+ u2—|f+|2 the SCME's for deep SSG’s cannot be neglected, we have
as a function of position; it is also asymmetric. As an asideproven the existence of stationary solitary solutions. We
we mention that Hamiltonia(b2) always has inversion sym- would expect that in this case more general solutions, such as
metry with respect to the origin; this implies the existence oftraveling solitary wave solutions and stationary and traveling
a separatrix like that shown in Fig. 5, but inverted. However,dark solutions, also exist.
the field densities associated with these solutions are the As mentioned in the preceding paragraph, SSG’s often
same as those in Fig. 6. behave like shallow uniform gratings. However, it should be

Equations(55) represent stationary bright solitary wave noted that this resemblance fails at the two boundaries of an
solutions to Eqs(33), and thus, via transformatiof@1), to  SSG: in a shallow uniform grating the envelope functions are
continuous over each such interface, while for SSG’s the
interface conditions are somewhat more complicated, and in-
volve the Bloch functions. This difference is not important
when considering solitary wave solutions in inifinite media,
but do play an important role when, for example, calculating
the reflection spectrum of a SJG5].

Our treatment shows that the criterion commonly used in
the literature for a SSG to be shallow is overly restrictive,
and that simple results can be obtained under somewhat
more general conditionsee Eqs(A13) and the discussion
following it]. Under these more general conditions the Row-
land ghost gaps are not equally spaced in detuning, espe-
cially if 7 is not too largd Eq. (17)]; this contrasts standard
results in which the Rowland ghost gaps are taken to be
equally spaced3,8]. Moreover, we show in the Appendix
that the size of a Rowland ghost gap is not simply given by
the associated Fourier component of the §&@s. (A13)].

_2 0 2 A The differences occur because a SSG can be considered to be
o a perturbeduniform grating, which has a curved dispersion
}pOS]LUOH relation (see Fig. 2 equally spaced Bragg resonances only
occur when the underlying dispersion relation is taken to be

FIG. 6. Solitary wave solution corresponding to the separatrixa Straight line.

shown in Fig. 5. Shown isf+u3=|f.|? as a function of position. Possible generalizations of our work would involve start-
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ing from the coupled mode equations fordaep uniform

grating, rather than those for a shallow one as we did here E [
[Egs. (4)]. One could surmise that if one could show that .
these also lead to SCME’s such as Eg@®) (of course with

different coefficienty this would imply the existence of a —; K/—n8—n

hierarchy, where at every length scale a similar set of equa-
tions applies. It would also imply that Eggl2) are the most

2w/
k+ ——A

A a+,/_2 O/—n@4 n
n

2w/
e A *=0,

general set of equations that apply to periodic media with a 2w/
nonlinearity, and that any such structure supports solitary 2 —k- T_A a_,/—; S/-nd-n
wave solutions at every scale.
In conclusion, we have presented a general theory of 2
SSG's, leading to a set of SCME@2). These reduce to _; K/—n@y n|€ 5 "=0. (A5)

well-known results in appropriate limits, and have an appeal-

ing resemblance to the standard coupled mode equations fq: .

g : . he transformation from Eq(13) to Eqgs. (A5) can be
uniform gratings. We have also shown that in the most gen;, . . . ;
eral case the SCME’s possess stationary solitary wave solﬁhotht of as being equivalent to changing from a coordinate

tions, and we surmise that these are members of a mo'rgpresentation to a momentum representation in quantum

general set which can travel through the SSG unimpeded. Mechanics. Since the exponentials in the sums IV!(E_E)
are orthogonal, the only way the sums can be zero is if all the

coefficients vanish. Thus for each integérwe have the
following two equations:

The authors are grateful to Ben Eggleton and John Sipe
for many discussions regarding SSG’s, and James Yardley
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APPENDIX A: FOURIER METHOD 2 —0
FOR CALCULATING BLOCH FUNCTIONS B = Ks—n@-n=Y,

In Sec. Il we showed that the Bloch functions for a me-
tagrating are solutions to eigenvalue problétB). Here we ( 27/

a_ ,— E/ 5/—na—,n

outline a method which provides numerical solutions to the —k— —6—A ]

eigenvalue problem. We also give explicit expressions for A
the Bloch functions for shallow SSG’s.

Since all the functions of interest in E¢L3) have peri- _; K/—n@4n=0. (AB)
odic componentse.g., see Eq(15)], following a standard
procedure in condensed matter phydi24], we can make
the following expansions:

This infinite set is equivalent to the eigenvalue problem

Aa=Aa, (A7)
2w/
K(X)=2, k&K, (A1) o " _ .
7 whereA is the infinite Hermitian matrix consisting of
([ 27,
_— —K
2w/ A 0 0
d(x)=2, 8,7, (A2) . , 0=
7 2]
Ai,j: — Ko —k—T—50
2m/ O-i  Kj-i ]
Y= a+,/e‘TX)e‘kx, (A3) | Ki-i Oj-i]’
7 (A8)
anda is the column vector with elements
2w/ X
()= >, av/e'TX)e'kX, (A4)
7 (...,a4 _j,a_ _j,819,8_p,84 1,8_1...). (A9)

where the only unknowns are the coefficients ,. Note  Equation(A7) shows that the only effect of the zeroth-order
that sincex(x) and&(x) are real function$Eq. (5)] we must  Fourier component of(x) is to shift the detunings of all the
havex_,=«}, and similarly foré. In terms of expansions eigenvalues uniformly, as, for example, in E@). The
(A1)—(A4), Egs.(13) can be written as “central” region of matrix A is
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4
_50_k+T —K_-1 _5,1 —K_-» _5,2 —K_3 _5,3 —K_3
2@
— K1 —50+k—T — Ko _5,1 —K-1 —6,2 —K_-»2 _5,3
2
_51 — Ko _50_k+T —K-1 _6,1 —K_2 _5,2 —K-3
— Ko _61 — K _§0+k — Kp _5_1 —K-1 _5_2
762 —Kq 751 —Kp 760*'( —K_1 75_1 —K_»
2w
— K3 -85 — Ky -6 — K1 _5O+k+T — Ko -6,
27
_63 — Ko _52 — K1 _51 — Ko _50 k_T —K-1
4
—Kag _53 — K3 _52 — K3 _51 — K _(So+k+T

We have thus transformed the coupled differential equacomponents includingi=0 satisfy inequality(20). How-
tions (13) into matrix equation(A7), whereA is an infinite  ever, this would lead to the conclusion tlzaty uniform grat-
Hermitian matrix. The eigenvalues #f correspond to those ing, which can always be considered to be a SSG with in-
of Eg. (13), and thus give the frequencies of the Bloch func-finitesimal periodic perturbation with arbitrary period, is a
tions. The eigenvectors &, via Eqs.(A9), (A3), and(A4),  deepSSG. For this reason one could argue for the exclusion
give the Bloch functions. of the dc component ok from inequalities(20). Below we

It may not be immediately clear that solving the eigen-adopt this latter definition, as results for the more restrictive
value problem for an infinite Hermitian matrix is an im- criterion of Jayaramaet al. [3,8] follow as a special case.
provement over solving Eq13). However, this approach  prom the general matri#A10) it is easy to obtain results
has a number of advantages. Importantly we can truncate tgyiq i the weak SSG limit. In the shallow SSG limit, then,
matrix A and find the eigenvalues and eigenvectors numerig, s, andx, (/#0) are taken to be small, and only first-

cally. This is useful if we are interested n only the f'TSt few order contributions in these parameters are included. Con-
eigenvalues, corresponding to the location of the first fewSider first values ok away from the edae and the center of
Rowland ghosts, as the inclusion of higher-order Fourier co: y 9

efficients is unlikely to alter the results significantly. To cal- the Brillouin zone k#0,m/A). Then all diagonal elements

culate the band diagram in Fig. 3 and the Bloch functions irPf matrix (A10) differ, and the small parameteds and

Fig. 4 we approximated by a 200< 200 Hermitean matrix. only contrlbyte to second order to the elgenv_alues. Conse-
In Fig. 3 only 15 bands can be seen, although by solving thgue.ntly, we ignore these small parameters, Whlch only leaves
eigenvalue problem for a 200200 matrix we obtain 200 thei=j blocks of Eq.(A8) in matrix (A10). The diagonal-
bands. Choosing an appropriate size for the matrix is a traddzation of these gives rise to the dispersion relation given by
off between accuracy and speed. The larger the matrix, thée solid line in Fig. 2. Thus for values éfaway from the
more accurate the eigenvalues, but at the cost of a long@enter and edges of the Brillouin zone the dispersion curve
calculation. The required size of the matrix also depends ofPr @ shallow SSG is the same as that for a uniform grating
the SSG profile. For a SSG as in Fig. 1, which has disconti{see Sec. 1 B

nuities, the magnitude of the Fourier components decreases We now consider the edge and the center of the Brillouin
as 1/n|, wheren is the order; clearly, in this case the re- Zone. The situation is now more complicated than that dis-
quired size of the matrix is larger than for SSG’s without cussed in the paragraph above because the diagonal elements

discontinuities, where the Fourier components’ magnitudéf matrix (A10) are now two-by-two the same. For this rea-
decreases more rapidly. son the small off-diagonal elements of matfi10) contrib-

ute linearly to the eigenvalues, and thus they cannot be ne-
glected. Retaining only first-order contributions, it can be
seen by inspection that matriXA10) can be block-

As mentioned in Sec. 1B, there is some ambiguity as todiagonalized by simply interchanging rows and columns;
how to define a shallow SSG. Jayaranwral. [8], for ex-  each block is a %4 submatrix. The submatrices can be
ample, implicitly define a SSG to be shallow if all Fourier written as

Results for the weak SSG limit
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—6p— D cosp, —Dsinp, -6, —K_,
—Dsing, — 8o+ D cosp, —K_, -0,
. , (A1)
o, — K, —6p+D  cosp, —Dsing,
— K, —5/ —D/SinQD/ _50_D/C03p/
|
where/ is a nonzero integer, and i
, X)= —(sinp, e % +cosp,e"'9),
/77 ¢+( ) \/ﬁ( V% Sp )
D cosp,=——,
A -
I : . 6
D,sing, = ko. (A12) Y-(0=- ﬁ(00$/e"0/+smqo/e+'°/), (A14)

Even values o occur atk=0, while odd values occur at
k=m/A. The submatrice$All) can easily be diagonalized;
the four eigenvalues are

where

w/ 1
=——+ EarqK/).

/A

(A15)
A:_50+D/i|K/_§/Sin(p/|,

Similarly, at A=—6y,+D,—|k,— §,sing,|, at the bottom

A=—060=D, %[k, +,sing|. (A13)  of Rowland ghost gap’,
This means that, for shallow SSG’s, the Rowland ghost gaps 1
are centered about the detuninBs [Eq. (17)], and have ¢ (X)= ——(sing, 19 —cosp, 19,
widths 2« ,* &, sing,|. The more restrictive results of Ja- V2A
yaraman etal. [8] are obtained asky—0, so that
D, =/mlA [Eq.(17)], and siro,=0 [Eq. (A12)]. 1 Lo L6
Thus far we have only used the eigenvalues of the sub- Y-(X)= \/ﬁ(_COS‘P/e Pt sing, e71%). (AL6)

matrices(Al1l). Via Egs. (A3) and (A4) the eigenvectors

immediately lead to the Bloch functions. Thus using normal-

ization (24) and convention(23), the Bloch function at
A=—-56y+D, +|k,— 6, sing,|, at the top of Rowland ghost
gap/, is given by

Note that both Bloch functions satisfy EQ3), as re-
quired. Finally, the Bloch functions of the photonic band gap
centered aroundd=-5,—D, can be found from Egs.
(A14) and(A16) by replacinge, by ¢+ 7/2.
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